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ABSTRACT '
- = 7257
This report presents shadow data and heat input data for the S-49
EGO. It gives times for which each experiment is in the shadow of
either the Earth, the satellite's main box or the solar array. It also
gives the heat inputs to the experiments as a function of time from
launch for one complete orbit. The heat inputs include direct solar
radiation, reflected solar radiation and Earth emitted radiation.
The shadow data are presented for a launch date of May 15, 1964
at 13.0 hours U.T. The heat input data are for a launch time of May

15, 1964 at 8.0 hours U.T. The injection elements are from Reference

2. The satellite's geometry is from References 3 and 4.
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I. INTRODUCTION

The Orbiting Geophysical Observatory (OGO) consists of a main
box, the solar array and the orbital plane experiment package (OPEP).
Experiments may be appended to any of the three main component parts
either directly or on booms. As many as fifty experiment packages
may be carried on the OGO spacecraft. (See Figure 1). The solar
array and the OPEP may rotate relative to the main box. The main box
and the solar array are considered as casting shadows and carrying ex-
periments, the OPEP is considered only as carrying experiments. A
method for calculating the radiant heat inputs to each experiment is
also presented in this report. These inputs include direct solar, re-
flected solar and Earth emitted heat flux. If an experiment is shielded
from the Sun by the Earth, the main box or the solar array, the solar
input to that particular experiment is set to zero. If an experiment is
in the eclipse of the Earth the reflected solar (as well as the direct
solar) heat input is set equal to zero. However, the effects of shadow-
ing of an experiment from the Earth by the main box or the solar array
is not considered in the computation of the solar reflected or Earth
emitted heat inputs to that particular experiment. Shadow data are
presented for the S-49 (EGO) for a launch date of May 15, 1964 at 13.0

hours U.T. The heat input data are for a launch time of May 15, 1964



at 8.0 hours U.T. The injection elements are from Reference 2.

S-49 geometry is from References 3 and 4.
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II. NOTATION

Cross sectional area.

The fraction of the solar constant o which is re-

flected away from the Earth (albedo).
The equatorial radius of the Earth.

The integrand of the integral for q_, (t). In

equation (47) it is defined on page 38.

The integrand of the integral for q g (t)- In

equation (60) it is defined on page 44.

Incidence factor defined by equation (45).

= Tyg X ;vs ; the angular momentum vector per unit

mass.

Shadow indicator at time t; 0 in shadow, 1 not in

shadow.
Angle of incidence.

Orthogonal unit vectors.
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= (a,b,c); the 3-vector representing the line
connecting the projections of points j and j +1 onto
a test plane, as defined by equations (20, 21), and

appendix C.

= B},’;l - Ej” ; as used in appendices C and D.

Outward normal to an elemental area AA; of the

Earth's surface; it is defined in equation (49).

Unit vector normal to an experiment surface.
Augmented position vector (xi”, A 1) .

A position vector (xi" » V" ) defined by equation (17).
Augmented position vector (xn”, v,'s 1 ) .

A position vector (xn” R yn") defined by equation (18).
A position vector used in appendix B.

The heat flux incident upon a surface of the nth

ex-
periment at time t, which is emitted by the Earth,

It is given by equations (60) and (62).
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The accumulated heat flux q_; over a time interval;

it is defined by equation (63).

The heat flux incident upon a surface of the nt! ex-

periment at time t, which originates at the Sun and
reflects from the Earth. It is defined by equations

(47) and (58).

The accumulated heat flux q_, (t) over a time

interval; it is defined by equation (59).

th

The heat flux incident upon a surface of the n'" ex-

periment at time t, which radiates directly from

the Sun. It is defined by equation (43).

The accumulated heat flux q,, over a time interval;

it is defined by equation (46).
Augmented position vector (x,y, 2, 1), (a 4-vector).
A position vector (x, y, z).

The vector which points from the Earth to the

vehicle.

The velocity of the vehicle relative to the Earth.
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xlmn' Ylmn' Zlmn

- The vector which points from the satellite to the

Earth's elemental surface area A, . It is given

| by equation (51).

The vector which points from the vehicle to the

Sun.

The vector which points from the Earth's elemental

surface area MA; to the Sun.
The vector which points from the Earth to the Sun.

= (Ai, B, C,, Di) ; a 4-vector representing a face

defined in equation (3).
Defined by equation (10).
Time.

Reference time.

= (1, 1, 1); a vector.
Defined by equation (22).

Vectors (xl, X xn) , (yl. Yoms yn) and (21. Zo Zn) s

respectively.
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The coordinate system associated with i, j,k,

respectively,

The angle corresponding to the longitude in the
plane normal tory; , the zero line being the projec-

tion of TB on this plane. (See Figure 5).

The value of a associated with the elemental area

AA ; defined by equation (50).

The angle between ;vn and the tangent to the Earth

from the satellite; (equation 48).

The angle of incidence of the Sun's rays on an

elemental area of the Earth's surface.

The value of y, associated with the elemental area
AA, . It is the angle between the vectors ﬁlm and

_r—slm (Figure 5). It appears in equation (52).

The angle between the radius vector which points
from an elemental area of the Earth's surface to

the vehicle and the normal to that area.
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m

The value of 7y, associated with the elemental area
OA,; . It is the angle between the vectors N;, and

(—;lm) (Figure 5). It appears in equation (54).

The angle between the vector which points from
the vehicle to an elemental area of the Earth's
surface and the unit outward normal to the ex-

periment surface,

The value of y; associated withMA; . It is the
angle between the vectors n and ;Zm (Figure 5). It

appears in equation (55).

An incremental surface area of the Earth (Figure 5);

it is defined in equation (57).

The angle between the vector ;VE and the radius
vector from the center of the Earth to the surface

element in question.

The value of 6 associated with the elemental area
AA, . It is the angle between N, and ry;. Equa-

tion (50).




The emittance per unit area of the surface of the

Earth,

The solar constant

The solar array angle; defined by equation (35).

(Figure 1).

The OPEP angle; defined by equation (42). (Figure 1).



Superscripts and Subscripts

Denotes rotated coordinates in equations (4), (5),
(7), (8) and (9). Also denotes a change of origin

location in equations (14) and (15).

Denotes vectors in the test plane.

Box.

Referring to the nt" experiment.

Solar array.

Referring to a point on the solar array axis.

OPEP.

Referring to a point on the OPEP axis.

10




Vector Operations

AxB The cross product of the vectors A andB.

A -B The scalar product of vectors A andB.

U
=

- - oF -
VF =135 +4] a—y+k

E

; the gradient of the scalar

UV

z

functionF.

11



III. ASSUMPTIONS

A. Initial Conditions

The initial conditions are assumed to be the same as the Agena

burnout conditions (Reference 2) namely:

geocentric latitude = -20.28 degrees

terrestrial longitude = 111.902 degrees

geocentric height = 281621.6 meters

the speed of the vehicle = 10645.27 meters per second
azimuth = 66.355 degrees

flight path angle = 1.47148 degrees

B. Restraints on Launch Time

The results presented in this report are for launch times for which
perigee does not go below its initial value for one year. See Reference
5 for the results of a detailed launch window study.

C. S-49 Spacecraft Geometry

The assumed geometry, presented in this section, is given in the
box coordinate system. The center of gravity (c.g.) of the spacecraft
was arbitrarily chosen as the origin. The coordinates of the solar
paddles and the OPEP are given in a standard position relative to the
box (solar array angle & = 0 and OPEP angle ¥ = 0) together with the

location of their axes of rotation.

12




1. Shadowing Surfaces

a. Main Box — The box coordinates of the vertices (corners)

of the main box are a follows:

Point

b. Solar Array — The coordinates of the solar

X

inches

-14.607

-14.607

14.607

14.607

-14.607

-14.607

14.607

14.607

follows: (See Figure 2).

Point

Pl

P2

P3

P4

P5

P6

X

inches

-117.841

-117.841

39.541
39.541
26.491

26.491

(See Figure 2).

13

y

inches

23.5

-43.5

-43.5

23.5

23.5

-43.5

-43.5

23.5

inches

0.0

0.0

0.0

0.0

0.0

0.0

z
inches

14.983
14.983
14.983
14.983
-14.983
-14.983
-14.983
-14.983

array are as

z
inches

-36.877
36.877
36.877
18.677
18.677

-18.677



X y z

Point inches inches inches

P7 - 39.541 0.0 -18.677
P8 - 39.541 0.0 -36.877
P9 117.841 0.0 -36.877
P10 117.841 0.0 36.877
Pil 39.541 0.0 36.877
P12 39.541 0.0 18.677
P13 26.491 0.0 18.677
Pl4 26.491 0.0 -18.677
P15 39.541 0.0 -18.677
Pl6 39.541 0.0 -36.877

The axis of rotation of the solar array passes through the point

(Xpop ypos Zpo) = (00 0,0 )-

2. Experiments

The coordinates of the experiments and their normals are as

follows (See Figure 2).

COORDINATES
. X y z
Experiment Inches Inches Inches
E.P. 1 - 74.2 91.1 12.3
E.P. 2 49.9 100.1 15.3
E.P, 3 - 12.7 103,1 - 4.2

14




Experiment

E.P. 6
SOEP 1
SOEP 2
OPEP 1
OPEP 2
The axis of rotation of the

(xT, Voo z.r): (0, 43.5,

Normals

SOEP 1
SOEP 2
OPEP 1

OPEP 2

X
Inches

20.6

11.4

- 6.7

-102.7

102.4

- .2

- 2

OPEPS passes through the point

o

).
X
-1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0

1.0

15

y

Inches

- 94.4

288.1

-288.9

3.4

3.4

43.1

43.1

0.0

1.0

1.0

-1.0

1.0

-1.0

1.0

1.0

0.0

0.0

z
Inches

-19.2

-25.2

-16.7

- .30

- .30

45.8

-45.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0



IVv. MATHEMATICAL MODEL FOR SHADOW TESTING

A. General Description of the Shadow Computations

In order to carry out the shadow computations, the geometry of
the satellite (the main box, the solar array, and the experiments) has
to be described analytically. The configuration of the satellite is
described in a coordinate system which is fixed in the main box. The
shadowing of experiments by the main box and the solar array is de-
termined by testing the shadow cast by each of their component faces.
This may result in some duplicate testing, since part of the faces may
overlap, but no special assumption need be made as to its shape. Any
three dimensional object may be approximately described by a number
of plane faces.

The geometry of the satellite is input to the program by loading
the coordinates of all its vertices and identifying the vertices belong-
ing to each component face. Care must be taken that the polygon
circumscribing each component face be convex. The occurrence of
re-entering edges can and must be avoided by subdividing the cor-
responding face into several convex polygons. The coordinates of
points on the solar paddles and the OPEP are given in a standard
position relative to the box (solar array angle @ = 0 and OPEP angle
¥ = 0) together with the location of their axes. The program will then

compute the rotation angle of the solar array and OPEP from their

16



attitude control logic and obtain the position of shadowing surfaces and
experiments attached to paddles and OPEP.

The program operates by transforming the coordinates of the Sun
and the Earth into the box coordinate system by means of a transforma-
tion matrix described in section IV-C.

Fewer points are involved in this transformation than in the re-
verse process. In this box coordinate system, the shadow cylinders of
all the faces are then computed and the location of the experiments
within or outside these cylinders is tested. If any experiment is found
to be inside the shadow cylinder of any one surface, this experiment is
in the shadow and no further testing is necessary for this experiment.
Similarly, if the satellite is in the shadow of the earth, no shadow
testing will be performed for any of the faces.

B. An Experiment Shadowed From the Sun by a Polygonal Plane Face.

1. The Equation of a Plane Formed by a Surface of the Main Box.

The vertices of the box are denoted by r, (i = 1.2, * * * N). Out
of these N points various sets of k points (k > 3) are given as vertices
of the corresponding faces. The first three points of each such set are
used to determine the equation of the plane in which the face lies.

Care must be taken in the selection of these points, so that an
accurate description of the surface is obtained from these points. In

particular they must be chosen to lie on edges which are not too short

17




and not near parallel. This can always be achieved by arranging the
points in proper order. If the first three points on the surface are
denoted by ;l s -r_m and ;n the equation of the surface may be written in

the form (see Appendix A).

X y z 1
X; v oz 1
= 0
xm ym zm 1 (1)
Xn Yn Zn 1
or alternately by:
A, x+B,y+C,z+D;, = 0 (2)

The four vector (Ai, B;, C;, Di) is denoted by S, and is taken as the
analytic representation of the plane containing the ith face. The
vectorsr, r;, r, andr_ are in a coordinate system which is fixed to
the main box. If the three-vector (xl, X s xn) is denoted by X; _ with
the corresponding notation for ?lmn and 2lmn and U is defined as the

vector U = (1, 1, 1) (see Appendix A); consequently.

Ai = ﬁ ) (?lmn x Zlmn
B, = U- (zlmn x Xjmn
e B (3)
Ci = U (xlmn x Ylmn
D1 = xlmn (?lmn x Zlmn)



2. The Equation of a Plane Formed by a Surface of the Solar Array.

r. and r,
1 1

!

represent position vectors of any solar array point in

its zero and rotated position respectively. r__ represents the coordinates

po

of any point on the axis of rotation. The axis of rotation is parallel to

the x-axis, hence

X, - X.
i i

<«
n

Ypo ¥ (yi "ypo) cos @ - (zi *zpo) sin @

z, zp°+(yi—ypo) sinq>+(zi—zp°) cos @
where ¢ is the angle of rotation. (See Figure 3).

Introducing the Notation:

(4)

Ax. = x.-x with corresponding definitions for Ay, , Az, equation

i i po

(4) can be rewritten:

Xi - Xi

&
1

Ay, cos® - Az, sin®

b
N
"

Dy, sin® + Az, cos®

Equations (4) or (5) give the coordinates of any point attached to the

paddle in its rotated position.

The rotated position coordinates of any three points on the
surface can be used to obtain the vectors describing the planes

containing the paddle faces. It is, however, more convenient to

(5)

carry out the transformation directly on the vectors (Ai, B, Ci,Di)

19




describing the plane, by equation (2). The 4-vector (Ai', B/, C/, Di')
describing the rotated plane is given in terms of X, , Y;. ., Z;,, by

means of equation (3) where
Xinn = X1 Xp o Xy
with corresponding definitions for Y,/ and Z, .

Further

&
1
<
{
L]
al

AN = Y-y U (6)

Ri
I
]|
!
N
cl

where the subscripts 1, m,n have been dropped for convenience. In

terms of these quantities:

X' = X
Y = ypoﬁ + AYcos® - AZsin®d (7)
Z' = zpoﬁ + AYsin® + AZcos ®

Substitution of Equation (7) into (3) then results in the following equations:

A’ = A

B’ = Bcos®-Csin®

C' = Bsin®+Ccos® (8)

D' = D—B[ypo (cos®-1)+tz,, sind)]
+Cy,sin®-z,, (cos @ - 1)]

20



3. OPEP Points.

The OPEP is assumed to be carrying only experiments, hence only
the formulae concerning transformation of points are necessary. Further,
the rotation takes place about an axis parallel to the z-axis. The formulae

are consequently:

X, T xp, + (xi - xTo) cos ¥ - (yi —y.l.o) sin ¥
yil = yTo + (xi —xTo) sin¥ + (yi _yTO) cos ¥ (9)
z.! = z

i i

where ¥ is the angle of rotation. (See Figure 4).

4, Sunny or Shady Side Test.

In terms of these vectors the sign of the product,
(§i . ﬁj) (§i . §k) = s (See Appendix B) (10)

determines the position of points ?j and }_k relative to surface S;. In
particular if s< O,-r—i and ?k lie on opposite sides of the surface, and if
s >0, —r_j and ?k lie on the same side of the surface and for s = 0 at
least one of the points lies on the surface. If now ;j represents the
Sun's coordinates and ?k the coordinates of an experiment to be tested,
s > 0 means then that the surface 'S_i cannot cast a shadow on experi-

ment Fk . If, however, s <0 further tests have to be performed to

21




determine whether the experiment lies inside or outside the shadow

cylinder of the face.

For the box surface §i is defined by equation (3). For a solar
array surface §i is defined by the 4-vector (A’, B', C', D’) which is
given in equation (8).

If an experiment is attached to the main box its augmented position

vector
R, = (x;,v;,2;,1) (11)

may be substituted directly into equation (10) for the test. If the ex-

periment is attached to the solar array

R. = (xj’,y’.’,z' 1) (12)

i i’

where

1

’ ’
X. L,z
j oY%

are given by equation (4). If an experiment is attached to the OPEP

i
I

(%' vy 2. 1) (13)

j )
where

' [
. . Z .
x] 'yJ N |

are given by equation (9).

22



5. Shadow Cylinder Test

If s <0 (where s is defined in equation (10) above) this establishes
that the Sun and the experiment lie on opposite sides of the surface.
Further tests have to be performed to determine whether the experiment
lies inside or outside the shadow cylinder of the face.

This testing is accomplished by projecting both face and experi-
ment onto a plane perpendicular to the Sun's radius vector. A polygonal
face will always be projected into a polygon, unless the Sun's radius
vector is parallel to the face, in which case no further testing need be
performed for this combination of surface and experiment. Let the first
vertex r; (chosen arbitrarily from among the M vertices on the face) and

the other vertices _r_p, fg + -+ -..ctc (taken in order around the face)
be renamedr; (i=0....M-1).

If r_ is now chosen as origin, the coordinates of the vertices

relative to this origin are given by:

r,, = r; -1, (14)
in particular

r, = (0,0,0)
Further

rsy T Tgy T T, (15)




where ;sv is the vector from satellite to Sun. (Note: because of the
relative size of the components of ;sv and ;o the vectors ;slv and _r_sv
will in general be numerically identical).

In terms of these vectors, a coordinate system is now set up in

the test plane (i.e. the plane perpendicular to ;s'v by means of the

unit vectors 1", j".

i

!
gy X Iy

"

e

o i
'l'svx r |

(16)

) U
l'sv)( 1

|

1
|rSV|

The coordinates of the projections of the vertices onto the test plane

are now given by:
p, = x,/i" +y/ )" (17)

where

24




and the coordinates of the projection of the experiment (n) are given by:

P - " " " "

q" = x 1" +y/'"]j
" - — T

X r i (18)
" - o "

y, = r] - j

In this test plane, the shadow cylinder is represented by a polygon with

the M sides

Lj,j+l (J = 0...M_1)

where L, ., is the straight line containing the projection of the
jgtl

vertices ?j’ and ?j’ﬂ (Note: In this connection it is convenient to

equater ' to r '). The equation of the side I—-',',,'+1 is given by (See

Appendix C):

y// 1
i yj” 1 =0 (19)
X' Yin 1
or alternately:
a;x" +b,y"*+c; = 0 (20)

25




where

-— " i

i T Y T Yin
= —_ H "

b; X" + xjy (21)
= " " - " "

€i i Yine T XY

The vector (aj, bj, cj) is taken to represent the line fj,j«u and the

three vector Q = (xn”, Yoo l) represents the point q ; and let
iv2 ("512' Yit2 1)

represent the j + 2 vertex of polygon projected onto the test plane. In
terms of these vectors, the experiment represented by the vector ﬁn
lies inside the polygon in the test plane (and consequently inside the

shadow cylinder of the face) if:
u = (Q, 'L iu) (Pisz "Ly i) >0 (22)

for all j between 0 and M- 1. See Appendix D for the mathematical
derivation of this expression.

C. Ideal Control Laws and Definition of Axes Systems

The geometry of the OGO satellite is described in a coordinate
system attached to the main structure, (box coordinates), whereas the
orbit and consequently the vectors from the Sun and Earth to the sat-

ellite as well as the velocity of the satellite are given in a different

26



coordinate system. In order to carry out the test described in section
IVB, the components of all vectors have to be known in a single coordinate
system. It is convenient to use the box coordinate system to carry out
this testing, since fewer transformations have to be made.

In order to relate these coordinate systems and to establish the
transformation matrices, the ideal control laws for the OGO satellite
were assumed. Further, these relations are written entirely in terms
and r

of the vectors ;VE, T Consequently, the transformations will

VE sv*

be valid, no matter what coordinate system is used in describing the
orbit.

In order to describe the transformation from the orbital to the
box coordinate system, a matrix is established. In addition, an angle
of rotation must be determined for the solar array and another for the
OPEP.

In the following, four coordinate systems are considered. Each
coordinate system is defined by a'triple (i, 3, k) of mutually orthogonal
unit vectors. The systems attached to box, solar array and OPEP are
identified by subscripts B, p and T respectively. Quantities without
subscripts refer to the orbital coordinate system.

The three vectors ;VE’ _;'_VE, rgy (the position and velocity vector of
the satellite with respect to the Earth and the position of the Sun with

respect to the satellite) are given in the orbital coordinate system.

27




1. The Orbital To Box Transformation Matrix.

The ideal control laws are specified in Reference 5.

a). The positive zj face is aligned with the radius vector from the
center of the Earth to the satellite.

b). The solar array is normal to incident sunlight.

c). The Sun does not shine on the positive y, face. (Reference 5).

d). The positive x face of the OPEP faces forward in the plane of

the orbit. (Reference 6). These laws lead to the following

equations:
Due to a).
K o= ;::' (23)
Due to b).
—— Ty
Jp ~ l;Svl (24)
Since the paddle rotates about an axis parallel to ig
jp = Jpcos® + k,sin® (25)
From (equation 25)
jp - ig = O



and by definition

Consequently

|°12__T_—| (26)

The vector triple is completed by defining

ig = kgx ig (27)
According to c).

Jg " Tgy <O (28)

Equation (28) resolves the ambiguity in equation (26) as follows: Sub-

stituting from (26) into (27):

_ kgx (kgx Jp) ) [(EB " p) kg (kg - k) TP:I
P R [Fax T o

H+

From (24)

sv JTP Fsvl (30)
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From equations (28), (29) and (30)

0> jg * rgy * Fsvl[(ﬁg ) —j—p)z - kg sz] (31)
From (25)k; - jp = sin®
0>7F5 - Tgy = % |Tgy|[sin?@-1] (32)

In Equation (32) the term |?sv| [sinz(b - 1] is less than or equal to zero,
it follows that the plus sign must be chosen in equations (26) and (29).
If now r is an arbitrary vector with components x, y, z in the orbit

system and coordinates xg, yg, zg in the box system

Xg T T - ig Vg = T - i zg = T - kg (33)
or in matrix notation
Xg ig-i ig-j ip -k x
yp | 5| Jp- i ig ) ig k) |y (34)
zg kp-i kg * ] kg - k z

The vectors iy, _TB_, kg are defined by equations (23), (26) and (27).
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2. The Solar Array Angle ¢.

The solar array dangle ® is obtained from equations (24) and (25).

Ty - _

T

_ (35)
l;SVI . EB = sind®

SV

For the transformations, only cos ® and sin® are needed, the angle ¢

need not be computed.

3. The OPEP Angle V.

The vector i, is in the plane of the orbit and
ky = kg (36)

The orbit plane is defined by the angular momentum vector H

H = rypx Ty (37)

H is normal to the orbit plane hence

R | (38)

Further, i, points in the direction of motion, i.e;

_i_’r ’ ;vn >0 (39)
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Substituting (23) and (37) into (38) yields:

i = 4 (_;vn) X (—r—vgx:r_“)

|Tve| |k x H|

(40)

1 o+ e
* o] [Ea 8] Lo Foe) Foe = (v o) o
Substituting (40) into (39):

—- -~ _ 1 — - - - 2
0 <ip - ryg = % I;VEl |Erxﬁ| Urvrzlz |rvziz—(rvz' rvz) :l

by Schwartz's inequality the expression in braces is positive, hence
the plus sign has to be selected in equation (38).

The vector triple is now completed by:

b T Er X 1q (41)
The OPEP angle ¥ is now obtained from the equations:
I‘r IB = cosV¥
(42)
_i-'r JTB = sinV

Again, for the transformations, onlycos¥ and sinV¥ are needed.

D. Detailed Shadow Testing Procedure.

The equations of the planes containing the potential shadowing

faces are established initially and the corresponding vectors (Ai,

32



B, C,, Di,) . As described in equations (1) and (2) are computed and
stored, together with the list of its vertices. This is done initially for
both box and solar array faces. The solar array faces, however, must
be rotated at every test time after the angle ¢ has been established
according to equation (8). The testing at every point is now carried out
in the following sequence:

1. Satellite Earth Shadow Testing.

It is determined whether the satellite is in the Earth's shadow
cone., If it is, the possible shadowing effect of satellite components
need, of course, not be determined. If this test, however, shows the
satellite to be in the sunlight, testing has to be carried out for each
individual experiment as follows:

2. Individual Experiment Testing.

a). The matrix described in equation (34) is computed.

b). The solar array angle ® is computed by equations (35).

c). The OPEP angle ¥ is computed by equations (42).

d). The coordinates of Sun and Earth with respect to the
box are transformed from the orbital to the box
coordinate system by equation (34).

e). The coordinates of the experiment are transformed,
if necessary, (i.e. if the experiment moves with either
the solar array or the OPEP) by equations (4) or (9)

respectively.
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Items a) through d) of this list to be performed only once for each set
of tests (i.e. for each time point). Item e) has to be performed for each
experiment.

After all this setup work has been completed, the shadow tests are
carried out for this particular experiment designated by (n)as follows:

All the faces are tested in turn until:

a. Either all surfaces have been tested and it has been established
that none casts a shadowon experiment (n). In this case, experiment (n)
has been established to receive incident sunlight and the next experi-
ment (n+1) is tested.

b. Or a face has been found which casts a shadow on experiment
(n). In this case, experiment (n) has been established not to receive
incident sunlight, the effect of the remaining faces need not be examined,
and the next experiment (n+1) is then tested.

The hierarchy of tests, for a particular experiment (n) and face (i)
is described in the following:

1. Test whether face (i) is connected to solar array, and carry
out, if necessary, the transformation described in equations (8).

2. Test whether the experiment lies on the sunny side or the
shady side of the plane containing face (i) by using the augmented
box coordinates of the Sun as ﬁj and the augmented box coordinates

of the experiment as ﬁk and substituting in equation (10).
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If s >0 the experiment is on the sunny side, this face cannot cast
a shadow on experiment (n) and the next face is then tested.

If s = 0 either the Sun, or the experiment, or both lie on the sur-
face and the surface is assumed not to cast a shadow on experiment (n).
In this case, the next face is tested.

If s< 0 the experiment (n) lies on the shady side of face §,. See
Appendix B for more details. If it also lies within the shadow cylinder
of the face it will be in shadow,

3. Test whether experiment (n) is within the shadow cylinder of the
face (i). In order to carry out this test, the following steps have to be
taken:

a). Compute the vectors r/', ?o’ and rg, for the experiment
(n), all the vertices of faces (i) and the Sun by equa-
tions (14) and (15).

b). Set up the coordinate system (i, j”) in the test plane
by equation (16).

c). Compute the coordinates (x”, y") of the vertices and
the experiment in the test plane (i.e. the plane normal
to the Sun's radius vector), by equations (17) and (18).

d). Compute u by equation (22) for edge (j).
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If u<0, the experiment lies outside the shadow cylinder of this
face, this face does not shadow experiment (n) and the next face i+ 1)
is then tested.

If u= 0 the experiment is also taken to be outside the shadow
cylinder and the next face (i + 1) is then tested.

Ifu> 0 for the j'" edge the next edge (j + 1) of the face is tested

until one edge has been found for which u<0, Then this face (i)

does not cast a shadow and the next face (i + 1)is tested. If all

edges of a face have been tested and u> 0 for all edges then this
face (i) casts a shadow on experiment (n). The program then
proceeds to the next experiment (n + 1), This is explained in more

detail in Appendix D,
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V. MATHEMATICAL MODEL FOR HEAT INPUTS TO AN

ARBITRARILY ORIENTED SURFACE OF OGO.

A. Direct Solar Radiant Heat.

This is the heat flux q_, (t) incident upon a surface of the nthex-

periment at time t, which radiates directly from the Sun. It is given by:

dns (t) = I(t)af(in(t))[l}_sv(t)u—z (43)

here: I(t) = 0 or 1 depending on whether the experiment is in shadow
or Sun, o is the incident radiation on a unit area at a distance of 1 AU

from the Sun, and i_ the angle of incidence given by

= |

=3

cos in = (44)

- |

where En is the normal to the experiment surface in box coordinates.
If cosi_ <0, the experiment surface faces away from the Sun and

receives no radiation. This is expressed formally by
. _ 1 . .
f(1n) = f(cos i+ Icos i ‘ ) (45)

In the case of an earth satellite the variation of ‘;sv‘ is too small to

matter and a constant value may be used. The accumulated radiation
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between times t_ and (t, +NAt) is given by:

N-1
1r. .
qns (to' to+NAt) = Z -2— [qns (to +kAt) +qns (to + (k+ 1)At)] An Atk (46)
k=0
where
A_ = the area of experiment (n)

B. Reflected Solar Radiant Heat.

This is the heat flux q_, (t), incident upon a surface of the nth ex-
periment at time t, which originates at the Sun and reflects from the

Earth. In integral form (See Figure 5).

Qa(t) = wffa (Y1+ Y2» 731 1) dA (47)

where,

a = the albedo = the fraction of the solar constant o which is
reflected away from the Earth. The value for ais about 0.34
(Reference 7).

o =1.97 £ 0.01 cal cm~ 2 minutes~! = 0,1374 watts cm™2 = flux

of total radiation received outside the Earth's atmosphere

per unit area at mean Sun-Earth distance (Reference 7).
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<C°S Yy cosY, C0573> if cosy,> 0 and

f v Yo Y3 T) T
a (71 Y2273 ) cosy, >0 and cos7y;>0

r2

-
1}

0 if cosy, <0 or cosy,<0 or cosy;<0

a.,
o
I

an elemental area of the Earth's surface (Figure 5).

7, = the angle of incidence of the Sun's rays on the Earth's sur-
face element (Figure 5).

7, = the angle between the radius vector r which points from dA to
the vehicle and the normal to the Earth's surface element dA
(Figure 5).

Y3 = the angle between the veétor T and the unit outward normal
to the experiment surface (Figure 5).

T = the vector which points from the vehicle to dA (Figure 5).

The method of numerically evaluating Equation (47) is given in the
following paragraphs.

Let ¢ be the angle between FVE and the radius vector from the
center of the Earth to the surface element in question, and a be the
angle corresponding to the longitude in the plane normal to FVE the
zero line being the projection of IB on this plane. (See Figure 5).

The part of the sphere which the satellite can see is then

characterized by



where

ag
cos 8 Toe] (48)

here a_ is the radius of the Earth. The range of 6 and a is now sub-

E

divided such that

N6 = B/L

Aa = 21/M

The normal to the Earth's surface element AA; is approximated by

N,, = igsin6;cosa - —j—B sinf; sina_ - EB cos ¢, (49)
where
(- 3)s
91 - L ’ l = 0, 1, 2, 3 , L-1
1
2 o 3 50
a = M + m = 0,1, 2, 3 , M-1

The position vector of this surface element from the satellite is given

by:

(51)




Note that the ry; vector in this equation is given in the box coordinate
system.

It may now be determined whether radiation from this segment of
the Earth's surface reaches experiment (n) by using vector ;lm in place

of the Sun vector r__ in the tests described in section IV. Note in

SV
particular that the only additional set up work which has to be done is
the transformation of the experiment into box coordinates (item e when
necessary) and only the tests have to be performed.
The cosines of three angles determine the amount of incident

radiation received from the lit surface of the earth. They are:

a). The angle of incidence ¥, of the Sun's rays on the surface

element. This cosine determines the intensity of the

illumination of the surface element and is given by the

equation,

cos Yyym - Ny 7= I (52)

where

- |
I
i
W]
2|

Sim SE E Im
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The degree of accuracy required for this computation allows

T © r¢; and equation (52) then becomes:

(53)

b). The angle 7,, between the radius vector from the sur-
face element to the vehicle and the normal to the sur-
face element. This angle controls the size of the surface

element as seen from the satellite. The cosine of this

angle is given by equation (54).

- lm LN
COSYo2im - Nim (54)

;lm in this equation is defined by equation (51);

c). Finally the angle ¥,, between the incident radiation and
the normal to the experiment surface determines the solid
angle subtended by the experiment at the origin of radia-
tion. This angle v;,;.is given by equation (55)

- Tim

COS V3im — T’ ‘; ‘
im

(55)

n_ here is the normal to the experiment surface in box

coordinates.
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1. Contribution due to a lit surface element:

The contribution of the particular element AA,  to the reflected

solar heat flux at time t is given by equation (56).

Oq, , ()

Im

Here

and

aollm f(’)/llm) f(72lm) (f3lm) AAlm
‘2 (56)

m|r .,

0 if the experiment is shaded by the satellite

1if the experiment is not shaded

1
f(y) = 3 (cosy+lcosy|)

A, = allflasing, (57)

In equation (56) ¥;,.s Y5ims ¥3;m @0d T, are functions of time. The

total reflected solar heat flux received from all surface elements is

4., () = ZA&,,.(t) (58)
l.m
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This may be accumulated over a time interval from t_ to (to +NAt)

N—1
q,, (t,, t +NAt) = Z %[c’;na (t, tkOt) +q [t +(k wtl)At)'JAn A, (59)
k=0

C. Earth Emitted Radiant Heat

This is the heat flux an (t) incident upon a surface of the nth ex-
periment at time t, which is emitted by the Earth. In integral form

(See Figure 5).

4. (t) = A _[fE (720 75, 1) dA (60)
where
A = 0.02215 watts cm ? = the emittence per unit
area of the surface of the
Earth.

cos 7y, Cos y,
f, = 3 if cos y,>0 and cosy,;>0
r

= 0 if cosy2§0 or cos’y3§0

This is evaluated numerically and is analogous to (56), (58), and
(59), except that the angle of incidence of solar energy is immaterial.

The equations are as follows:
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The contribution from the element AALm to the Earth emitted heat
flux at time t is given by equation (61).
AL, f(72 lm) f(yslm) AA, L

Bq,g (t) = (61)

2
ﬂrlm

The total Earth emitted heat flux received from all surface elements is

4, (£) = A, g (t) (62)
L

The accumulation over a time interval from t to (to +NAt) is

q_p (to' t +NAt) = Z %{an (to +kAt) +c.lnE (t0 + (k+ l)At)] An At (63)
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VI. RESULTS AND DISCUSSION

A. Shadow Study

Figures 6 through 8 present the amount of time per orbit that the
EGO S-49 experiments spend in the shadow of the earth, the main
satellite structure (the box) or of the solar array. These data are for
three faces of the main box +zy, ~zg and -yp for the boom or appendage
mounted experiments (E.P. 1 through E. P. 6), and for the orbital
plane experiment package (OPEP 1 and 2). The coordinates for the
sides of the main box and the experiments are shown in Section III of
this document. In the case of the shadowing of the faces of main box
test points were assumed to be along the axes of the box coordinate
system and slightly above the surface (0.1 inch). The shadow history
of the test point of each face is assumed to closely approximate the
shadow history of the face itself. The test point device was incorporated
to facilitate the mathematical description and programming of the
system. The coordinates of the main box test points and normals are

as follows:

46



Coordinates

Box Experiment (inc,}(1es) (inc)}’1es) (incies)

+x 14.707 0 0

-X -14.707 0 0

+y 0 23.6 0

-y 0 -43, 6 0

tz 0 0 15.083

-z 0 0 -15,083
Normals

+x 1.0 0 0

-x -1.0 0 0

+y 0 1.0 0

-y 0 -1.0 0

tz 0 0 1.0

-z 0 0 -1.0

The study for shadowing is based on a nominal orbit (See Section III for
injection conditions) with a launch date of May 15, 1964 at 13. 0 hours

U.T.
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1. The Main Box Experiments

Figure 6 shows the history of shadow time per orbit for a year of

flight time for the +z_, -z, and -y, faces of the main box. The figure

B’ "B

indicates that for the +z, and -z faces the shadow time per orbit
varies between approximately 1 hour and 41.0 hours. The -y, face
experiment, however, spends practically all of its time in sunlight.
During the first 34 days in orbit the -y face experiences shadows of
about 0.5 hours after which time it senses full sunlight except between
the 144th and 152nd days after launch when the shadow time gets only
as high as 2.5 hours. At about the 265th day after launch, the -yg face
again goes into a period during which it senses about 0.5 hours shadow
per orbit. The shadow history of this face (in fact of the whole satellite
and experiments) is a function of the time of launch. Consequently, for

other launch dates the shadow history will be different.

2. Boom Mounted Experiments

The time-in-shadow history of the boom mounted experiments
(E. P. 1 through E. P. 6) is shown in Figure 7. This time history curve
is typical of any launch date, however the curve set would be different
for different launch dates.

The figure clearly shows that the experiments in the order E. P. 1,
E.P. 2, E.P. 3, E.P. 5, E.P. 6 (E.P. 4= E.P. 6) are exposed to

increasingly more sunlight. The maximum shadow time per orbit
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varies from almost 40 hours for E.P. 1 to about 2.5 hours for E.P. 4

and 6.

3. OPEP

Figure 8 presents the time-in-shadow histories of the orbit plane
experiment packages (OPEP). The experiment packages, OPEP 1
and OPEP 2 experience some shadow time during every orbit. These
shadow times, however, vary from 41l. 0 hours per orbit to less than
1.0 hours per orbit. Again, as in the other cases, this curve set will
be different for different launch dates.

B. Heat Inputs

Figures 9 through 20 present the heat inputs incident upon the
different faces of the satellite as a function of time from perigee for
the first orbital period (42. 75 hours). These heat inputs include the
Earth emitted heat flux c'lE, the direct solar heat flux ('15 and the solar
reflected heat flux c'18. The solar heat input to an experiment is set
to zero if that particular experiment is shielded from the Sun by the
Earth, the main box or the solar array. If an experiment is in the
eclipse of the Earth the reflected solar (as well as the direct solar)
heat input is set equal to zero. However, the effects of shadowing of
an experiment from the Earth by the main box or the solar array is not
considered in the computation of the solar reflected or Earth emitted

heat inputs to that particular experiment. The reflected solar heat
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flux is calculated by two different methods. The exact value is com-
puted by numerically evaluating the integral given by equation (47).
The method of calculating the approximate values is given in Reference
8. In this method an average value is assumed for ¥, in equation (47).
It is assumed that Y (average) is the angle between the vector from
the Earth to the Sun and the vector from the Earth to the satellite. In
other words for a given location of the Earth, Sun and vehicle, the
approximate reflected solar heat input depends only upon the angle
between the experiment's normal and the Earth vehicle vector. The
Earth emitted and solar reflected heat inputs are negligibly small
when the satellite is beyond an altitude of 20, 000 nautical miles or
correspondingly 2. 63 hours of flight time from perigee. The data in
these figures are based on a time of injection into orbit of May 15,
1964 at 8.0 hours U.T. These curves are intended to demonstrate the
capability to calculate heat inputs rather than to provide design data.
The values of the Earth emitted heat inputs depend only upon the shape
of the orbit and are independent of launch time. The direct solar and
reflected solar heat inputs depend upon the relative locations of the
Earth, the Sun and the vehicle; consequently they are dependent upon
the launch time. The unit normals to the various $-49 experiments

are given in section III.
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1. The Main Box

a. Earth Emitted Heat Inputs
Figure 9 presents the Earth emitted heat inputs gq; to the main
box as a function of time from perigee. The +z, face has the largest
Earth emitted heat input since it always faces the Earth. Conversely,
the -z, face has a zero Earth emitted heat input. The tXp , "Xp, tVg,
and the -y, faces all have equal Earth emitted heat inputs due to geo-
metrical symmetry with respect to the Earth.
b. Direct Solar Heat Inputs.
Figure 10 presents the direct solar heat inputs ((';s) to the main
box as a function of time from perigee. This is a typical curve. The

solar heat inputs to the +x_ , -x; and +y, face are always zero. This

B?
is true since the OGO satellite is controlled such that these faces
receive no direct solar heat.

c. Reflected Solar Heat Inputs.

Figure 1l presents a comparison between the exact and approxi-
mate values of the reflected solar heat inputs. The +tz; face has the
largest reflected solar heat input since it faces the Earth. The -z,
face has zero reflected solar heat inputs since it faces away from the
Earth. The exact value of the reflected solar heat inputs to the +xg

and ~xp faces are equal since there is symmetry with respect to these

faces and the sun-lit portion of the Earth. The approximate values of
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the reflected solar heat inputs to the +x ~Xp, tyg and -y, faces are

B?
all equal. This is true since an average value is assumed for ¥, in
equation 47. It is assumed that y, (average) is the angle between the
vector from the Earth to the Sun and the vector from the Earth to the
satellite. This is tantamount to assuming that for a given Earth, Sun
and satellite configuration the amount of reflected solar heat inputs
depends only upon the angle between the normal to the surface and the
Earth-satellite line. Figure 11 shows that the largest difference

between the exact and approximate value is 1.16 milliwatts /cm?.

2. Boom Mounted Experiments

Figures 12 through 14 present the heat inputs to the boom mounted
experiment packages (E.P. 1, E.P., 2, E.P. 3, E.P. 4, E.P. 5, and
E.P. 6) as a function of time from perigee. The normals which define
the orientation of the faces which have the various heats incident upon
them are given in Section III of this report. These particular faces
were chosen for investigation since they have the largest openings through
which radiant heat may enter to the experiment packages.

a. Earth Emitted Heat.

Figure 12 shows the Earth emitted heat inputs to the experiment
packages. All six experiment packages have equal Earth emitted heat
input time histories. This is true since the normals to these experi-

ments are parallel to the surface of the Earth.
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b. Direct Solar Heat Inputs.

Figure 13 shows the direct solar heat inputs to the experiment
packages. E.P. 4 and E. P. 6 have the same value of solar heat inputs
since their normals point in the same direction. The direct solar heat
inputs to E.P. 1, E.P. 2, E.P. 3and E.P. 5 are identically zero.
This is true since the normals to these experiments are oriented such
that they never receive sunlight.

¢c. Reflected Solar Heat Inputs.

Figure 14 presents a comparison between the exact and approxi-
mate values of the reflected solar heat inputs to the boom mounted
experiment packages. E.P. 4 and E.P. 6 have equal exact reflected
solar heat flux since their normals are equal. Likewise E.P. 2, E.P. 3,
and E. P. 5 have equal exact reflected solar heat flux because their
normals are equal. E.P. 1 through E.P. 6 have equal values of
approximate reflected solar heat flux since the angles between their

normals and the Earth vehicle vector are all equal, i.e.,

Tve

— ‘n = gQ°
BN

cos~ !

Figure 14 shows that the largest difference between the exact and

approximate values is 1. 36 millwatts/cm?.
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2. The Solar Oriented Experiment Packages

The solar oriented experiment packages (SOEP 1 and SOEP 2)
both have their normals pointing toward the Sun and therefore have
equal heat inputs.

a. Earth Emitted Heat Inputs.
Figure 15 shows the Earth emitted heat flux to SOEP 1 and 2.
b. Direct Solar Heat Inputs.

The direct solar input to SOEP 1 and 2 is constant (137. 4 milliwatts/
cm?) since it is controlled to point toward the Sun. Figure 16 shows
that the satellite did not go into an eclipse during this particular time
period, since the curve is continuous.

c. Reflected Solar Heat Inputs.

Figure 17 presents a comparison between the exact and approxi-
mate values of the reflected solar heat inputs to SOEP 1 and 2. Figure
17 shows that the largest difference between the exact and approximate
values is 1. 22 milliwatts/cm?.

3. The Orbit Plane Experiment Packages.

The orbit plane experiment packages (OPEP 1 and OPEP 2) are
controlled so that their normals lie in the orbit plane and such that
the angle between their normals and the vehicle velocity vector is less

than 90° (orn -1, > 0).
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a. Earth Emitted Heat Inputs
Figure 18 presents the Earth emitted heat inputs to OPEP 1 and 2.
The values are equal since both OPEP normals point in the same direc-
tion,
b. Direct Solar Heat Inputs
Figure 19 presents the direct solar heat inputs to OPEP 1 and
OPEP 2. The two experiments have the same inputs except for shadow-
ing of the OPEPs by the main box. This figure shows that OPEP 2 has
no solar heat input from 0. to 32.5 hours from perigee. It also indi-
cates that OPEP 2 is shadowed from the Sun by the main box. OPEP 1
becomes shadowed by the main box at 42.5 hours.
c. Reflected Solar Heat Inputs
Figure 20 presents a comparison between the exact and approxi-
mate values of the reflected solar heat inputs to OPEP 1 and 2. OPEP
1 and 2 have equal inputs since they have equal normals. The largest
difference between the exact and approximate values is 0. 73 milliwatts/

cm2.
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APPENDIX A

The Equation of a Plane

Equations (1) and (2) in Section IV-B show a fourth order determinant
and the analytical expression of a plane surface. The determinant and its
relation to the analytical expression are shown here.

Let-r-l y T, ;n be vectors in an orthogonal coordinate system which
are directed to any three vertices of a plane surface.

If i, j,k are unit vectors along the x, y, z axes respectively ;l’

n+ Tn Can be expressed as:

r, = ix ¢ iy, ¢t kzl

ro = ix + vy, + Ezm

_ _ _ (A-1)
r = ix + 1y, + Ezn

T = ix + —j-y + kz

Where r is any vector from the origin to the plane surface. Vector

subtraction forms the vectors u, v, w in the plane:

(x=x)i+ (y=y)) T+ (z-2)) K

el
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Since u, v, w are coplanar their triple scalar product is equal to zero.

u, uy u,
(uxv) -w = | v v, v | = 0 (A-3)
w, L w,

Where the elements of the determinant are the coefficients ofi, j, k

in equation (A-2). Hence

(x-x)  (vy-va) (z-za)| = O (A-4)

The above determinant may be expanded to:

x y z “X, -y, -z,

X, Vo -z, | t X y z +

—xn _yn -zn —xn _yn _zn

B A A T X Y TH

X, Vo -z | %, Vo -z, = 0 (A-5)
X y z X -y, -z,




Factoring out -1 from the I, m, n rows of each of the above determinants

and interchanging the rows for symmetry yields:

x y z
xm m zm -
xn yﬂ zﬂ

x y z
X y; z,0 -
xm ym zl‘l’l

y z
x; Y, z; |+
xn yn zn
X Y, z,
X, Yo z, = 0 (A-6)
X Zz
n n n

The determinants of equation (A-6) can be considered the minors of an

expanded fourth order determinant which has been expanded for a

column whose elements are unity.

x y
Xy Y,
xm ym
xn yn

Hence, the expression of a plane

determinant.

(A-T7)

N
(T

is described as a fourth order



Expanding equation (A-7) for the elements of the first row produces;

v, z, 1 e z, 1
x|y, z 1} -y | x, z, 11+
y, z, 1 X z_ 1
X1 Yy 1 ! Yi Z
z|x, Yo 1] - |x, Yo z, | = 0 (A-8)
xn yn 1 xn yn zn

Letting the minors of x, y, z, 1 equal A, B, C, D respectively the

analytical expression of a plane surface can be written.

Ax +By +Cz+D = 0

Accordingly, any plane surface can be described by the proper choice

of A, B, C, D, For instance the i*? surface is:

Aix+l3iy+Ciz+Di = 0 (A-9)

or in other words the four vector, (Ai ,B.,C. , Di) describes the ith

i i
surface. Since a triple scalar product can be written as a third order

determinant, the coefficients of the analytical expression for a plane




surface can be written as:

¥y Z
Ai = ym zm
yn zn
X z,
Bl. = - xm zll'l
X z
n n
X, ¥,
c, = X Yo
xn yn
X Y,
Di = - xm m
xn yn
where
len
Y imn
Zlmn
U

The right hand sides of these

1
1 = ﬁ : (Ylmn lemn)
1
1
1 = U ’ (zlmn xylmn)
1
1
1 - [_j : (X-Zmn x_Y—lmn) (A—IO)
1
2
zZ, = —ilmn (?lmn xz—lmn)
z,
= (xl’ Xno xn)
= (v, Yo ¥,)
(A-11)

= (zl’ Zn zn)

= (1,1, 1)

definitions are three-vectors.



APPENDIX B

The sign of a mathematical expression may be used to determine
whether any two points are on the same or opposite sides of a plane

surface.

(S; “R)(S;,"R) = s Equation (10), Section IV

where

7
h
>
®
0
o
<

is a four-vector denoting the
analytic representation of a
plane containing the it? face.
(See Appendix A).

|
il

| (x;, v;, 2;, 1) is a four-vector denoting the
} position of the Sun.

=l
I

. - (xk, Yir Zps 1) is a four-vector denoting the
position of an experiment
package.

if

s > 0 then ﬁj and R_are on the same side of §i.
s <0 then ﬁj and ﬁk are on opposite sides of §i .

s = Othen either R, or R_, or both are in the plane of S, .

In general, to determine the relative positions of two points in

space with respect to a surface it is sufficient to establish the angles




between a normal vector to the surface and the position vectors
measured from the surface to the points.

Graphically this may be represented (See Figure B-1), where

n = normal vector

E,- = vector from the surface to ;j
q_k = vector from the surface to —fk
T, = position vector of the Sun

, T, = position vector of an experiment package
—xk—i— + ykT + zk_lz

vector to origin of n

- |
1

—x—i_+yj—+z_lz

©-
]

i angle between n and E;_j

P

and Ek

=3

angle between

Note that E, q—j » Gy s _r_j , —r_k and r are all three-vectors (i. e. defined in

3-dimensional orthogonal space), and that




EXPERIMENT PACKAGE




Based on these definitions the following relationships are made:

SI_GN_OF SI_GN_OF SEGI\E OF | RELATION OF
CASE| ¢; @, n-q, n-aq (2 . SJ) x q; and q,
(n-a,)
1 qu <m/2 ¢, < /2 + + + same side
2 ®, >m/2| ¢, <m/2 - + - opposite sides
3 ®, <m/2| ¢ >7/2 + - - opposite sides
4 qu >7/2 b, > /2 - - + same side

This table may be summarized in one mathematical expression,

(F-3)(F-a) = s

(B-1)

When s>0, q; and q, are on the same side of the surface.

When s <0, Ej and q, are on opposite sides of the surface.

In order to prove that the sign of (§i . ﬁj) (§i . ﬁk) yields the

same information as (H . 5,) (H . ak) it is necessary to show the

relationship between the two expressions.

A x+B y+C z +D =
1 1 1 1
V(Aix+Biy+Ci z+D)) =

V(Ai x +B, y+C, Z+Di)

1]

A,i+B,j+C

normal to plane surface

k

0 (equation of plane surface)

(B-2)




Hence,

=)
"

A/i+B,J+Ck

From the figure above it can be seen that

These substituted into equation (B-1) yield:
7@ -] E-7)] = s
[(7-7) -G D)[F-7) -@-7)] = s

I:(Ai x; *B,y, *C, zj) - (A, x+B,y+C Z)J x

[(Ai x, *B,y, +C zk) - (Ai x+B, y+C, z)]

Since

D, = Ajx+B;y+C, 2z

Hence

(Aixj+Biyj +Cizj+Di)(Aixk+Biyk+Cizk+Di) = s (B-=3)



Defining

R, = (%, 902, 1)

R, = (%92, 1)
and noting that

S, = (A.B,,C,D)

Equation (B-3) can be written as

Hence, it is shown that the sign of this expression (which is identical
to equation (10), Section IV) is a valid means of determining whether

any two points are on the same or opposite sides of a plané surface.




APPENDIX C

The Equation of a Straight Line

The projections ofthe vertices ofa polygonal face onto the test

plane (See Figure C-1) are given by:

P, T ox ity (C-1)

The line connecting two successive vertices, p}." and ;—)j';l can be

represented by the vector difference of these two vertices.

lj','+1 = Eju _Bj'+1 (C-Z)

nu

- " _ “
ivit1 T ("3 "j+1)1

-u

(v i) (C-3)

Since the above expression is the equation of a straight line of the form

axu + by// + c = 0

where -a/b is the slope of the line. Hence, the slope of Tj j+1 is:
Stope = i T ¥in) o4
P (xj - % 1) (C-4)

The slope of any straight line is the same anywhere along the line,

consequently:

v, Ty YT,
x" - x" Tox" - x" (C-5)
j it1 j



[ VECTOR
| ) PERPENDICULAR
TO POLYGONAL PLANE
POLYGONAL PLANE
N
SHADOW CYLINDER
Pi 43
74 - E, PROJECTION OF
9n POLYGONAL FACE
(i.e. SHADOW OF FACE)
PROJECTION

OF AN EXPERIMENT

TEST PLANE
( PERPENICULAR TO
SUNS' RADIUS VECTOR)




Expanding yields:

" " " " " " " " —
-{x."-x. -y.") + [(x"-x. M-y, = 0
(J J+l)(y yl) ( J_)(yJ y1+1)
" I " i " "
-X. + x. R & -
j y i yl J*ly

" i " " H " " " " " .
X. St x A 4 . - X, ot ox, . =
itl yl y) y) +1 i y’ y

The above equation can be written in terms of determinants:

(C-6)

" u [ " ]
X

it1 Yj+1 Xiv1 Y+ X y

The determinants of equation C-6 can be considered the minors of an

expanded third order determinant which has been expanded for a column

whose elements are unity.

x y
N ! 1 = O
*i Vi (C-7)
X Y 1

Expanding equation C-7 for the elements of the first row produces:

" " o_ u" _ " u o_ " " “" _ " " =
X (yj yiﬂ) y ("j "j+1) * ("i Yi+1 "j+1y;’) 0 (C-8)
Letting

= " - "

8, Yi T ¥t

b. = —x" +x/

i j it1
— " i — " n

ST X Ve T XY,

C-3



Hence, the familiar straight line formula:

a, x" + b y" +c¢ = 0 . (C-9)

This equation can be considered the result of a dot product of two three-

vectors:

Li,j+1 = (235 B5 ) (C-10)
? = (X”, yu, 1) (C_ll)
_j,,'+1 P = a x"+ b, y' o+ c; = 0 (C-12)




APPENDIX D

The Shedow Test

In order to test whether or not an experiment is in the shadow of
the satellite the experiment is investigated with respect to each surface
of the satellite and to the cylindrical projected shadows from each of
these surfaces. The polygonal surface and the experiments are pro-
jected onto a test plane which is perpendicular to the Sun's light rays.
(See Figure C-1, p. C-2.) If a given point on the test plane (i. e. the
projection of an experiment onto the test plane lies within the bounda-
ries of the polygonal shadow on that plane the experiment will neces-
sarily have to be in the cylindrical shadow since the Sun and experi-
ment are on opposite sides of the satellite surface. If the boundary of

the polygonal shadow is described by a series of vectors 1, where

it

i =0, 1 2 -+ M- 1for an M sided polygon connected tip to tail in
clockwise fashion and if the given point lies on the right hand side of
each of these boundary-describing vectors the given point must lie
within the boundary. If the point lies to the left of any side of the poly-

gon the point cannot be within the boundary and hence is not in the

shadow of that surface of the satellite.



Graphically this may be represented as:

In this case the given point lies
to the right of each vector and
the experiment is in the shadow.

Given Point

In this case the given point lies

to the right of some but not all

of the boundary describing vectors
and hence the experiment is not in
the shadow of the surface causing
this polygonal shadow. It may be
in the shadow of another surface.

The sides of the polygon are represented by:

where

and

~}

- =
Pj+1 © Pj

(See Appendix C)

- M-1

number of sides on polygon



The vector an" is the projection of an experiment package on the test

plane in the Ej" system.

Let
E. = q, - p, (See Figure C-1 page C-2)
and also let
£ = (61““2 - EJ) XTJ j*1
M = Tj j_”xz

M lies in the plane of the polygon and is perpendicular to Tj Jit1e
I M-E >0 for all j from 0 to M~1 the experiment projection will lie to
the right hand side of each Ti i and consequently in the polygonal
shadow. If for any j, M- En < 0 the experiment projection cannot lie
within the polygonal shadow and consequently the experiment package

cannot be in the cylindrical shadow projected from the polygon in

space. It is shown here that

n (Qn' Ls.jﬂ)(P;‘ﬂ'Li-iH)

=l
|
"

Where



are three-vectors defined on page D-6,

Zj L+t = Pj”+1 - Pj” = (xj”+1 - xj") i+ (Yj”+1 - Yj”) 3" (D-1)
(?i"ﬂ "?i") = (X)) 3T (v, y) T (D-2)
Eosq w0 )T ) T (-3
IH _J— ’Eu
(ri”+2 ) ’ju) [y jen = | (8%27%) (%7y) 0 T 'E‘(D-4)
(x%mx")  (amy) 0
€ = {("j"n =x) (T T (X)) (vi%2- yj”)}k” = [€]k1D=3)
T 7 K
Ly, j+1%¢ (x;"% 1 = %") (¥i'"+1- ;) 0 (=M (D-6)
0 0 |Z]
i e el T e T -
M-E = (% =x) (v v ) E] - (a7 YS) (17 x")| 2| (D-8)

il
|
~A—
Porn)
I
: -

i
Ny
~—
——
=

+3

1

<
-
|
—~
«
=]

1
~
N
——
e

+
t
"
e
m—

But

(See Appendix C)

(D-9)




Hence:

(D-10)

Since

c. = x,-" Y,-"+1 "x’-"u Y,-" (See Appendix C)

M-E = (aj x’."‘,2 +bj yj"+2 +cj) (aj x " +bj y,'+ cj) (D-11)

n

The above expression can be thought of as the product of two dot

products:

M-E, = [(ai v By ) (%2 Vo 1)][(35’ bjrey) (Xa'r Va 1)] (D-12)

n

This can be written as:

e T,) (D-13)

=
=
1

N
+

)
ol

-+

N
S’
——
i



Where

Lo 41 = (aj, b, Cj) is a three-vector denoting the
analytical expression of a line which
is a boundary of the polygonal shadow
of a surface of the satellite.

P, = (xj"+2, Y420 1) i? a three-lref’ctor denoting the posi-
tion of the p;’,, vertex.
G, = (xn", Yo 1) is a three-vector denoting the posi~

tion of the projection of the nth ex-
periment on the test plane.

Hence the test can be written as:

(6,, .fj'j+1><?j+2.fj,j+l> >0 (D-14)

forallj =0,1,2 ... M-1 . This is identically equal to equation

(22) in Section IV B. The derivation shown in this appendix proves that
equation (22) is a valid means of determining whether or not an experi-
ment is in the shadow of a plane surface in space (i. e. a component
part of a satellite) providing that the Sun and experiment are on oppo-

site sides of the plane surface in space.
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Figure 5—Geometry for Heat Inputs.
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